[Orca-announce] New orcallator.se
Blair Zajac
bzajac at geostaff.com
Fri Sep 24 12:57:00 PDT 1999
Hello,
I just put together a new orcallator.se release that has many
improvements. Here are the comments relating to the changes
since orcallator.se was released with Orca 0.23.
I'll also start listing these separately from Orca on my
web site.
Blair
// Version 1.13: Sep 24, 1999 Fix a bug in the disk_mean calculation where
// it was being divided by the wrong disk_count.
// Now it should be much larger and in scale with
// disk_peak. When WATCH_DISK is defined, now
// print each disk's run percent. Add a new
// define WATCH_MOUNTS, which reports each mount
// point's disk space and inode capacity, usage,
// available for non-root users and percent used.
// This comes from Duncan Lawie tyger at hoopoes.com.
// Add some smarts so that if the number of
// interfaces, physical disk, or mounted
// partitions changes, then a new header is
// printed. This will prevent column name and
// data mixups when the system configuration
// changes.
// Version 1.12: Sep 14, 1999 Add the page scan rate as scanrate in
// measure_cpu.
// Version 1.11: Aug 13, 1999 Add the number of CPUs as ncpus. Move
// measure_disk and measure_ram sooner in the
// list of subsystems to handle. Increase the
// number of characters for each network
// interface from four to five. Add new disk
// reads, writes, Kbytes read, and Kbytes
// written per second. Add number of bytes
// of free memory in bytes as freememK.
// Version 1.10: Jul 28, 1999 Measure the process spawn rate if WATCH_CPU
// is defined and the user is root.
// Version 1.9: Jun 2, 1999 If WATCH_YAHOO is defined, then process the
// access log as a Yahoo! style access log.
// Restructure the code to handle different
// web server access log formats.
// Version 1.8: Jun 1, 1999 If the environmental variable WEB_SERVER is
// defined, use its value of the as the name
// of the process to count for the number of
// web servers on the system. If WEB_SERVER
// is not defined, then count number of httpd's.
-------------- next part --------------
//
// Orcallator.se, a log generating performance monitor.
//
// This program logs many different system quantities to a log file
// for later processing.
//
// Author: Blair Zajac <bzajac at geostaff.com>.
//
// Portions copied from percollator.se written by Adrian Cockroft.
//
// Version 1.13: Sep 24, 1999 Fix a bug in the disk_mean calculation where
// it was being divided by the wrong disk_count.
// Now it should be much larger and in scale with
// disk_peak. When WATCH_DISK is defined, now
// print each disk's run percent. Add a new
// define WATCH_MOUNTS, which reports each mount
// point's disk space and inode capacity, usage,
// available for non-root users and percent used.
// This comes from Duncan Lawie tyger at hoopoes.com.
// Add some smarts so that if the number of
// interfaces, physical disk, or mounted
// partitions changes, then a new header is
// printed. This will prevent column name and
// data mixups when the system configuration
// changes.
// Version 1.12: Sep 14, 1999 Add the page scan rate as scanrate in
// measure_cpu.
// Version 1.11: Aug 13, 1999 Add the number of CPUs as ncpus. Move
// measure_disk and measure_ram sooner in the
// list of subsystems to handle. Increase the
// number of characters for each network
// interface from four to five. Add new disk
// reads, writes, Kbytes read, and Kbytes
// written per second. Add number of bytes
// of free memory in bytes as freememK.
// Version 1.10: Jul 28, 1999 Measure the process spawn rate if WATCH_CPU
// is defined and the user is root.
// Version 1.9: Jun 2, 1999 If WATCH_YAHOO is defined, then process the
// access log as a Yahoo! style access log.
// Restructure the code to handle different
// web server access log formats.
// Version 1.8: Jun 1, 1999 If the environmental variable WEB_SERVER is
// defined, use its value of the as the name
// of the process to count for the number of
// web servers on the system. If WEB_SERVER
// is not defined, then count number of httpd's.
// Version 1.7: Mar 25, 1999 Simplify and speed up count_proc by 20%.
// Version 1.6: Feb 23, 1999 Print pvm.user_time and system_time correctly.
// Version 1.5: Feb 23, 1999 Always write header to a new file.
// Version 1.4: Feb 19, 1999 Handle missing HTTP/1.x in access log.
// Version 1.3: Feb 18, 1999 On busy machines httpops5 will be enlarged.
// Version 1.2: Feb 18, 1999 Output data on integral multiples of interval.
// Version 1.1: Feb 18, 1999 Integrate Squid log processing from SE 3.1.
// Version 1.0: Sep 9, 1998 Initial version.
//
// The default sampling interval in seconds.
#define SAMPLE_INTERVAL 300
// The maximum number of colums of data.
#define MAX_COLUMNS 512
// Define the different parts of the system you want to examine.
#ifdef WATCH_OS
#define WATCH_CPU 1
#define WATCH_MUTEX 1
#define WATCH_NET 1
#define WATCH_TCP 1
#define WATCH_NFS 1
#define WATCH_MOUNTS 1
#define WATCH_DISK 1
#define WATCH_DNLC 1
#define WATCH_INODE 1
#define WATCH_RAM 1
#define WATCH_PAGES 1
#endif
#include <stdio.se>
#include <stdlib.se>
#include <unistd.se>
#include <string.se>
#include <time.se>
#include <kstat.se>
#include <utsname.se>
#include <p_iostat_class.se>
#include <p_netstat_class.se>
#include <p_vmstat_class.se>
#include <pure_rules.se>
#include <live_rules.se>
#include <mib.se>
#include <tcp_class.se>
#include <tcp_rules.se>
#ifdef WATCH_MOUNTS
#include <mnt_class.se>
#include <statvfs.se>
#endif
#if WATCH_CPU || WATCH_WEB
#include <proc.se>
#ifdef WATCH_CPU
// This is the maximum pid on Solaris hosts.
#define DEFAULT_MAXPID 30000
#include <fcntl.se>
#endif
#ifdef WATCH_WEB
#include <stat.se>
// Define this macro which returns the size index for a file of a
// particular size. This saves the overhead of a function call.
#define WWW_SIZE_INDEX(size, size_index) \
if (size < 1024) { \
size_index=0; /* under 1KB */ \
} else { \
if (size < 10240) { \
size_index=1; /* under 10K */ \
} else { \
if (size < 102400) { \
size_index=2; /* under 100KB */ \
} else { \
if (size < 1048576) { \
size_index=3; /* under 1MB */ \
} else { \
size_index=4; /* over 1MB */ \
} \
} \
} \
} \
dwnld_size[size_index]++;
// Handle the reply code from the server.
#define WWW_REPLY_CODE(word) \
if (word != nil) { \
if (word == "304") { \
httpop_condgets++; \
} \
else { \
first_byte = word; \
if (first_byte[0] == '4' || first_byte[0] == '5') { \
httpop_errors++; \
} \
} \
}
// Handle the method of the object served. This define only works with
// non-proxy servers.
#define WWW_METHOD1(word) \
if (word != nil) { \
switch (word) { \
case "get": \
case "GET": \
httpop_gets++; \
break; \
case "post": \
case "POST": \
httpop_posts++; \
break; \
case "head": \
case "HEAD": \
ishead = 1; \
httpop_condgets++; \
break;
#ifdef WATCH_SQUID
#define WWW_METHOD2 \
case "icp_query": \
case "ICP_QUERY": \
squid_icp_queries++; \
break;
#else
#define WWW_METHOD2
#endif
#define WWW_METHOD_END \
default: \
break; \
} \
}
#define WWW_METHOD(word) WWW_METHOD1(word) WWW_METHOD2 WWW_METHOD_END
#endif
#endif
// Put all rules here so they can be accessed by the handle functions.
lr_cpu_t lr_cpu$cpu;
lr_cpu_t tmp_lrcpu;
lr_mutex_t lr_mutex$m;
lr_mutex_t tmp_mutex;
lr_net_t lr_net$nr;
lr_net_t tmp_nr;
lr_tcp_t lr_tcp$tcp;
lr_tcp_t tmp_lrtcp;
#ifdef WATCH_TCP
tcp tcp$tcp;
tcp tmp_tcp;
#endif
lr_rpcclient_t lr_rpcclient$r;
lr_rpcclient_t tmp_lrpcc;
lr_disk_t lr_disk$dr;
lr_disk_t tmp_dr;
lr_dnlc_t lr_dnlc$dnlc;
lr_dnlc_t tmp_lrdnlc;
lr_inode_t lr_inode$inode;
lr_inode_t tmp_lrinode;
lr_ram_t lr_ram$ram;
lr_ram_t tmp_lrram;
#ifdef WATCH_PAGES
ks_system_pages kstat$pages;
ks_system_pages tmp_kstat_pages;
#endif
lr_swapspace_t lr_swapspace$s;
lr_swapspace_t tmp_lrswap;
lr_kmem_t lr_kmem$kmem;
lr_kmem_t tmp_lrkmem;
ks_system_misc kstat$misc;
ks_system_misc tmp_kstat_misc;
// Put application globals here.
string nodename; // Name of this machine.
string program_name; // Name of this program.
int hz; // Clock tick rate.
int page_size; // Page size in bytes.
long boot_time; // Boot time of the system.
long interval = SAMPLE_INTERVAL; // Sampling interval.
#ifdef WATCH_CPU
int can_read_kernel = 0; // If the kernel can be read.
long kvm$mpid; // The last created PID.
// These variables store the mpid before and after the standard interval.
long mpid_previous;
long mpid_current;
ulonglong mpid_then;
ulonglong mpid_now;
// These variables store the mpid before and after 5 second intervals.
long mpid5_previous;
long mpid5_current;
ulonglong mpid5_then;
ulonglong mpid5_now;
double mpid5_rate;
#endif
#ifdef WATCH_MOUNTS
mnttab_t mnt$mnt;
mnttab_t tmp_mnt;
#endif
// Variables for handling the httpd access log.
#ifdef WATCH_WEB
string www_server_proc_name = getenv("WEB_SERVER");
string search_url = getenv("SEARCHURL");
string www_log_filename = getenv("WEB_LOG");
string www_gateway = getenv("GATEWAY");
ulong www_fd;
uint www_gatelen;
stat_t www_stat[1];
ulong www_ino;
long www_size;
double www_interval; // Hi-res interval time.
ulonglong www_then;
ulonglong www_now;
double www5_interval; // Actual hi-res 5 second interval.
ulonglong www5_then;
ulonglong www5_now;
double httpops;
double httpops5;
double gateops;
double dtmp;
long httpop_gets;
long httpop_condgets; // HEAD or code = 304 conditional get no data.
long httpop_posts;
long httpop_cgi_bins;
long httpop_searches;
long httpop_errors;
long dwnld_size[5]; // [0] < 1K, [1] < 10K, [2] < 100K, [3] < 1M, [4] >= 1M
long dwnld_totalz; // total size counted from log
#if WATCH_PROXY || WATCH_SQUID || WATCH_YAHOO
// If we're watching a Yahoo log, then take the transfer time to be the
// processing time.
double www_dwnld_time_sum; // transfer time
double www_dwnld_time_by_size[5]; // mean transfer time by size bin
#endif
#if WATCH_PROXY || WATCH_SQUID
long prxy_squid_indirect; // number of hits that go via PROXY,SOCKS,parent
long prxy_squid_cache_hits; // number of hits returned from cache
#endif
#ifdef WATCH_PROXY
long prxy_cache_writes; // number of writes and updates to cache
long prxy_uncacheable; // number of explicitly uncacheable httpops
// any extra is errors or incomplete ops
#endif
#ifdef WATCH_SQUID
long squid_cache_misses;
long squid_icp_requests;
long squid_icp_queries;
long squid_client_http;
#endif
#endif
// Variables for handling output.
ulong ofile; // File pointer to the logging file.
string col_comment[MAX_COLUMNS]; // Comments for each column.
string col_data[MAX_COLUMNS]; // Data for each column.
int current_column = 0; // The current column.
int print_header = 1; // Flag to flush header.
// Send the stored columns of information to the output.
print_columns(string data[])
{
int i;
for (i=0; i<current_column; i++) {
fprintf(ofile, "%s", data[i]);
if (i != current_column-1) {
fputc(' ', ofile);
}
}
fputc('\n', ofile);
fflush(ofile);
}
// Add one column of comments and data to the buffers.
put_output(string comment, string data)
{
if (current_column >= MAX_COLUMNS) {
fprintf(stderr, "%s: too many columns (%d). Increase MAX_COLUMNS.\n",
program_name, current_column);
exit(1);
}
col_comment[current_column] = comment;
col_data[current_column] = data;
++current_column;
}
flush_output() {
if (print_header != 0) {
print_columns(col_comment);
print_header = 0;
}
print_columns(col_data);
current_column = 0;
}
// Sets ofile to the output file pointer. Creates or appends to logfile
// if OUTDIR is set, otherwise sets the file pointer to STDOUT. It
// start a new logfile each day.
checkoutput(tm_t now) {
string outdir = getenv("OUTDIR");
string outname;
tm_t then;
char tm_buf[32];
if (outdir == nil) {
/* no output dir so use stdout */
if (ofile == 0) {
/* first time, so print header and set ofile */
ofile = stdout;
print_header = 1;
}
return;
}
/* maintain daily output logfiles in OUTDIR */
if (now.tm_yday != then.tm_yday) {
/* first time or day has changed, start new logfile */
if (ofile != 0) {
/* close existing output file */
fclose(ofile);
}
strftime(tm_buf, sizeof(tm_buf), "%Y-%m-%d", now);
outname = sprintf("%s/percol-%s", outdir, tm_buf);
ofile = fopen(outname, "a"); /* open for append either way */
if (ofile == 0) {
perror("can't open output logfile");
exit(1);
}
// Always write header.
print_header = 1;
then = now;
}
}
int main(int argc, string argv[])
{
utsname_t u[1];
long now;
long sleep_till; // Time to sleep to.
tm_t tm_now;
// Get the nodename of the machine.
uname(u);
nodename = u[0].nodename;
program_name = argv[0];
// Handle the command line arguments.
switch (argc) {
case 1:
break;
case 2:
interval = atoi(argv[1]);
break;
default:
fprintf(stderr, "usage: se [Defines] %s [interval]\n", program_name);
fprintf(stderr, "%s can use the following environmental variables:\n", program_name);
fprintf(stderr, " setenv WEB_SERVER netscape\n");
fprintf(stderr, " setenv WEB_LOG /ns-home/httpd-80/logs/access - location of web server log\n");
fprintf(stderr, " setenv GATEWAY some.where.com - special address to monitor\n");
fprintf(stderr, " setenv OUTDIR /ns-home/docs/orcallator/logs - default stdout\n");
fprintf(stderr, " setenv SEARCHURL srch.cgi - match for search scripts, default is search.cgi\n");
fprintf(stderr, "Defines:\n");
fprintf(stderr, " -DWATCH_WEB watch web server access logs\n");
fprintf(stderr, " -DWATCH_PROXY use WEB_LOG as a NCSA style proxy log\n");
fprintf(stderr, " -DWATCH_SQUID use WEB_LOG as a Squid log\n");
fprintf(stderr, " -DWATCH_OS includes all of the below:\n");
fprintf(stderr, " -DWATCH_CPU watch the cpu load, run queue, etc\n");
fprintf(stderr, " -DWATCH_MUTEX watch the number of mutex spins\n");
fprintf(stderr, " -DWATCH_NET watch all Ethernet interfaces\n");
fprintf(stderr, " -DWATCH_TCP watch all the TCP/IP stack\n");
fprintf(stderr, " -DWATCH_NFS watch NFS requests\n");
fprintf(stderr, " -DWATCH_MOUNTS watch usage of mount points\n");
fprintf(stderr, " -DWATCH_DISK watch disk read/write usage\n");
fprintf(stderr, " -DWATCH_DNLC watch the directory name lookup cache\n");
fprintf(stderr, " -DWATCH_INODE watch the inode cache\n");
fprintf(stderr, " -DWATCH_RAM watch memory usage\n");
fprintf(stderr, " -DWATCH_PAGES watch where pages are allocated\n");
exit(1);
break;
}
// Initialize the various structures.
initialize();
// Run forever. If WATCH_WEB is defined, then have measure_web()
// do the sleeping while it is watching the access log file until the
// next update time for the whole operating system. Also, collect the
// data from the access log file before printing any output.
for (;;) {
// Calculate the next time to sleep to that is an integer multiple of
// the interval time. Make sure that at least half of the interval
// passes before waking up.
now = time(0);
sleep_till = (now/interval)*interval;
while (sleep_till < now + interval*0.5) {
sleep_till += interval;
}
#ifdef WATCH_WEB
measure_web(sleep_till);
#else
sleep_till_and_count_new_proceses(sleep_till);
#endif
// Get the current time.
now = time(0);
tm_now = localtime(&now);
measure_os(now, tm_now);
#ifdef WATCH_WEB
put_httpd();
#endif
// Get a file descriptor to write to. Maintains daily output files.
checkoutput(tm_now);
// Print the output.
flush_output();
}
return 0;
}
initialize()
{
#ifdef WATCH_CPU
int i;
#endif
#ifdef WATCH_CPU
// Initialize the process spawning rate measurement variables.
// Determine if the kernel can be read to measure the last pid.
i = open("/dev/kmem", O_RDONLY);
if (i != -1) {
close(i);
can_read_kernel = 1;
mpid_previous = kvm$mpid;
mpid_then = gethrtime();
mpid_current = mpid_previous;
mpid5_then = mpid_then;
mpid5_previous = mpid_previous;
mpid5_current = mpid_previous;
mpid5_rate = 0;
}
#endif
#ifdef WATCH_WEB
// Initialize those variables that were not set with environmental
// variables.
if (search_url == nil || search_url == "") {
search_url = "search.cgi";
}
if (www_server_proc_name == nil || www_server_proc_name == "") {
www_server_proc_name = "httpd";
}
if (www_gateway == nil || www_gateway == "" ) {
www_gateway = "NoGatway";
www_gatelen = 0;
}
else {
www_gatelen = strlen(www_gateway);
}
// Initialize the web server watching variables. Move the file pointer
// to the end of the web access log and note the current time.
if (www_log_filename != nil) {
www_fd = fopen(www_log_filename, "r");
if (www_fd != 0) {
stat(www_log_filename, www_stat);
www_ino = www_stat[0].st_ino;
www_size = www_stat[0].st_size;
// Move to the end of the file.
fseek(www_fd, 0, 2);
}
}
www_then = gethrtime();
www5_then = www_then;
#endif
// Sleep to give the disks a chance to update.
sleep(DISK_UPDATE_RATE);
// Get the clock tick rate.
hz = sysconf(_SC_CLK_TCK);
// Get the page size.
page_size = sysconf(_SC_PAGESIZE);
// Calculate the system boot time.
boot_time = time(0) - (kstat$misc.clk_intr / hz);
// Perform the first measurement of the system.
_measure_os();
}
// Measure the system statistics all at once.
_measure_os()
{
tmp_lrcpu = lr_cpu$cpu;
tmp_mutex = lr_mutex$m;
tmp_nr = lr_net$nr;
tmp_lrtcp = lr_tcp$tcp;
#ifdef WATCH_TCP
tmp_tcp = tcp$tcp;
#endif
tmp_lrpcc = lr_rpcclient$r;
tmp_dr = lr_disk$dr;
tmp_lrdnlc = lr_dnlc$dnlc;
tmp_lrinode = lr_inode$inode;
tmp_lrram = lr_ram$ram;
#ifdef WATCH_PAGES
tmp_kstat_pages = kstat$pages;
#endif
tmp_lrswap = lr_swapspace$s;
tmp_lrkmem = lr_kmem$kmem;
tmp_kstat_misc = kstat$misc;
}
measure_os(long now, tm_t tm_now)
{
// Measure the system now.
_measure_os();
// Take care of miscellaneous measurements.
measure_misc(now, tm_now);
// Take care of cpu.
#ifdef WATCH_CPU
measure_cpu();
#endif
// Take care of mutexes.
#ifdef WATCH_MUTEX
measure_mutex();
#endif
// Take care of mount pointes.
#ifdef WATCH_MOUNTS
measure_mounts();
#endif
// Take care of the disks.
#ifdef WATCH_DISK
measure_disk();
#endif
// Take care of ram.
#ifdef WATCH_RAM
measure_ram();
#endif
// Take care of the network.
#ifdef WATCH_NET
measure_net();
#endif
// Take care of TCP/IP.
#ifdef WATCH_TCP
measure_tcp();
#endif
// Take care of NFS.
#ifdef WATCH_NFS
measure_nfs();
#endif
// Take care of DNLC.
#ifdef WATCH_DNLC
measure_dnlc();
#endif
// Take care of the inode cache.
#ifdef WATCH_INODE
measure_inode();
#endif
// Take care of page allocations.
#ifdef WATCH_PAGES
measure_pages();
#endif
}
/* state as a character */
char state_char(int state) {
switch(state) {
case ST_WHITE: return 'w'; /* OK states are lower case */
case ST_BLUE: return 'b';
case ST_GREEN: return 'g';
case ST_AMBER: return 'A'; /* bad states are upper case to stand out */
case ST_RED: return 'R';
case ST_BLACK: return 'B';
default: return 'I'; /* invalid state */
}
}
measure_misc(long now, tm_t tm_now)
{
long uptime;
char states[12];
char tm_buf[16];
uptime = now - boot_time;
states = "wwwwwwwwwww";
strftime(tm_buf, sizeof(tm_buf), "%T", tm_now);
states[0] = state_char(lr_disk$dr.state);
states[1] = state_char(lr_net$nr.state);
states[2] = state_char(lr_rpcclient$r.state);
states[3] = state_char(lr_swapspace$s.state);
states[4] = state_char(lr_ram$ram.state);
states[5] = state_char(lr_kmem$kmem.state);
states[6] = state_char(lr_cpu$cpu.state);
states[7] = state_char(lr_mutex$m.state);
states[8] = state_char(lr_dnlc$dnlc.state);
states[9] = state_char(lr_inode$inode.state);
states[10]= state_char(lr_tcp$tcp.state);
put_output(" timestamp", sprintf("%10d", now));
put_output("locltime", tm_buf);
put_output("DNnsrkcmdit", states);
put_output(" uptime", sprintf("%8d", uptime));
}
sleep_till_and_count_new_proceses(long sleep_till)
{
long now;
#ifdef WATCH_CPU
long sleep_till1;
long mpid5_diff;
double mpid5_interval;
double rate;
#endif
now = time(0);
while (now < sleep_till) {
#ifdef WATCH_CPU
if (can_read_kernel != 0) {
// Sleep at least 5 seconds to make a measurement.
sleep_till1 = now + 5;
while (now < sleep_till1) {
sleep(sleep_till1 - now);
now = time(0);
}
// Measure the 5 second process creation rate.
mpid5_current = kvm$mpid;
mpid5_now = gethrtime();
mpid5_interval = (mpid5_now - mpid5_then) * 0.000000001;
mpid5_then = mpid5_now;
if (mpid5_current >= mpid5_previous) {
mpid5_diff = mpid5_current - mpid5_previous;
}
else {
mpid5_diff = mpid5_current + DEFAULT_MAXPID - mpid5_previous;
}
rate = mpid5_diff/mpid5_interval;
if (rate > mpid5_rate) {
mpid5_rate = rate;
}
mpid5_previous = mpid5_current;
// Now take these results to measure the long interval rate.
// Because the mpid may flip over DEFAULT_MAXPID more than once
// in the long interval time span, use the difference between
// the previous and current mpid over a 5 second interval to
// calculate the long interval difference.
mpid_current += mpid5_diff;
mpid_now = mpid5_now;
}
else {
sleep(sleep_till - now);
}
#else
sleep(sleep_till - now);
#endif
now = time(0);
}
}
#ifdef WATCH_CPU
measure_cpu()
{
p_vmstat pvm;
double mpid_interval;
double mpid_rate;
pvm = vmglobal_total();
// In SE 3.0 user_time and system_time are int and in SE 3.1 they are
// double, so cast everything to double using + 0.0.
put_output(" usr%", sprintf("%5.1f", pvm.user_time + 0.0));
put_output(" sys%", sprintf("%5.1f", pvm.system_time + 0.0));
put_output(" 1runq", sprintf("%6.2f", tmp_kstat_misc.avenrun_1min/256.0));
put_output(" 5runq", sprintf("%6.2f", tmp_kstat_misc.avenrun_5min/256.0));
put_output("15runq", sprintf("%6.2f", tmp_kstat_misc.avenrun_15min/256.0));
put_output("#proc", sprintf("%5lu", tmp_kstat_misc.nproc));
put_output("scanrate", sprintf("%8.3f", pvm.scan));
// Calculate the rate of new process spawning.
if (can_read_kernel != 0) {
mpid_interval = (mpid_now - mpid_then) * 0.000000001;
mpid_rate = (mpid_current - mpid_previous) / mpid_interval;
put_output("#proc/s", sprintf("%7.3f", mpid_rate));
put_output("#proc/p5s", sprintf("%9.4f", mpid5_rate));
// Reset counters.
mpid_then = mpid_now;
mpid_previous = mpid_current;
mpid5_rate = 0;
}
}
#endif
#ifdef WATCH_MUTEX
measure_mutex()
{
put_output(" smtx", sprintf("%5d", tmp_mutex.smtx));
put_output("smtx/cpu", sprintf("%8d", tmp_mutex.smtx/tmp_mutex.ncpus));
put_output("ncpus", sprintf("%5d", tmp_mutex.ncpus));
}
#endif
#ifdef WATCH_NET
measure_net()
{
int previous_count = -1;
int current_count;
int i;
current_count = 0;
for (i=0; i<tmp_nr.net_count; i++) {
// Skip unused interfaces.
// if (GLOBAL_net[i].up == 0) {
// continue;
// }
++current_count;
put_output(sprintf("%5sIpkt/s", tmp_nr.names[i]),
sprintf("%11.3f", GLOBAL_net[i].ipackets));
put_output(sprintf("%5sOpkt/s", tmp_nr.names[i]),
sprintf("%11.3f", GLOBAL_net[i].opackets));
put_output(sprintf("%5sInKB/s", tmp_nr.names[i]),
sprintf("%11.3f", GLOBAL_net[i].ioctets/1024.0));
put_output(sprintf("%5sOuKB/s", tmp_nr.names[i]),
sprintf("%11.3f", GLOBAL_net[i].ooctets/1024.0));
put_output(sprintf("%5sIErr/s", tmp_nr.names[i]),
sprintf("%11.3f", GLOBAL_net[i].ierrors));
put_output(sprintf("%5sOErr/s", tmp_nr.names[i]),
sprintf("%11.3f", GLOBAL_net[i].oerrors));
put_output(sprintf("%5sColl%%", tmp_nr.names[i]),
sprintf("%10.3f", GLOBAL_net[i].collpercent));
put_output(sprintf("%5sNoCP/s", tmp_nr.names[i]),
sprintf("%11.3f", GLOBAL_net[i].nocanput));
put_output(sprintf("%5sDefr/s", tmp_nr.names[i]),
sprintf("%11.3f", GLOBAL_net[i].defer));
}
// If the number of up interfaces changes, then print new headers.
if (current_count != previous_count) {
print_header = 1;
previous_count = current_count;
}
}
#endif
#ifdef WATCH_TCP
measure_tcp()
{
put_output("tcp_Iseg/s", sprintf("%10.3f", tmp_tcp.InDataSegs));
put_output("tcp_Oseg/s", sprintf("%10.3f", tmp_tcp.OutDataSegs));
put_output("tcp_InKB/s", sprintf("%10.3f", tmp_tcp.InDataBytes/1024.0));
put_output("tcp_OuKB/s", sprintf("%10.3f", tmp_tcp.OutDataBytes/1024.0));
put_output("tcp_Ret%", sprintf("%8.3f", tmp_tcp.RetransPercent));
put_output("tcp_Dup%", sprintf("%8.3f", tmp_tcp.InDupPercent));
put_output("tcp_Icn/s", sprintf("%9.3f", tmp_tcp.PassiveOpens));
put_output("tcp_Ocn/s", sprintf("%9.3f", tmp_tcp.ActiveOpens));
put_output("tcp_estb", sprintf("%8lu", tmp_tcp.last.tcpCurrEstab));
put_output("tcp_Rst/s", sprintf("%9.3f", tmp_tcp.OutRsts));
put_output("tcp_Atf/s", sprintf("%9.3f", tmp_tcp.AttemptFails));
put_output("tcp_Ldrp/s", sprintf("%10.3f", tmp_tcp.ListenDrop));
put_output("tcp_LdQ0/s", sprintf("%10.3f", tmp_tcp.ListenDropQ0));
put_output("tcp_HOdp/s", sprintf("%10.3f", tmp_tcp.HalfOpenDrop));
}
#endif
#ifdef WATCH_NFS
measure_nfs()
{
put_output("nfs_call/s", sprintf("%10.3f", tmp_lrpcc.calls));
put_output("nfs_timo/s", sprintf("%10.3f", tmp_lrpcc.timeouts));
put_output("nfs_badx/s", sprintf("%10.3f", tmp_lrpcc.badxids));
}
#endif
#ifdef WATCH_MOUNTS
measure_mounts()
{
statvfs_t vfs_array[1];
statvfs_t vfs;
string comment_fmt;
string kbytes_fmt;
string inode_fmt;
string percent_fmt;
ulong kbytes_used;
ulong inodes_used;
double block_factor;
int comment_length;
int previous_count = -1;
int current_count;
current_count = 0;
// Traverse the mount table to find mounted ufs/vxfs file systems.
for (mnt$mnt.number$=0; mnt$mnt.number$ != -1; mnt$mnt.number$++) {
tmp_mnt = mnt$mnt;
if (tmp_mnt.mnt_fstype == "ufs" || tmp_mnt.mnt_fstype == "vxfs") {
if (statvfs(tmp_mnt.mnt_mountp, vfs_array) == -1) {
continue;
}
vfs = vfs_array[0];
++current_count;
// Generate the format strings for the comment and for the data.
comment_fmt = sprintf("mnt%%c_%s", tmp_mnt.mnt_mountp);
comment_length = strlen(comment_fmt) - 1;
kbytes_fmt = sprintf("%%%d.0f", comment_length);
inode_fmt = sprintf("%%%dld", comment_length);
percent_fmt = sprintf("%%%d.3f", comment_length);
// Calculate the number of 1 kilobyte blocks on the disk.
block_factor = vfs.f_frsize/1024;
// Capital letters refer to the disk usage in kilobytes. Lower case
// letters refer to inode usage.
// C - Capacity of the disk.
// U - Used capacity.
// A - Available capacity for non-root users.
// P - Percent used.
kbytes_used = vfs.f_blocks - vfs.f_bfree;
inodes_used = vfs.f_files - vfs.f_ffree;
put_output(sprintf(comment_fmt, 'C'),
sprintf(kbytes_fmt, block_factor*vfs.f_blocks));
put_output(sprintf(comment_fmt, 'U'),
sprintf(kbytes_fmt, block_factor*kbytes_used));
put_output(sprintf(comment_fmt, 'A'),
sprintf(kbytes_fmt, block_factor*vfs.f_bavail));
put_output(sprintf(comment_fmt, 'P'),
sprintf(percent_fmt,
100.0*kbytes_used/(vfs.f_blocks + vfs.f_bavail - vfs.f_bfree)));
put_output(sprintf(comment_fmt, 'c'),
sprintf(inode_fmt, vfs.f_files));
put_output(sprintf(comment_fmt, 'u'),
sprintf(inode_fmt, inodes_used));
put_output(sprintf(comment_fmt, 'a'),
sprintf(inode_fmt, vfs.f_favail));
put_output(sprintf(comment_fmt, 'p'),
sprintf(percent_fmt,
100.0*inodes_used/(vfs.f_files + vfs.f_favail - vfs.f_ffree)));
}
}
// If the number of mounted filesystems changes, then print new headers.
if (current_count != previous_count) {
print_header = 1;
previous_count = current_count;
}
}
#endif
#ifdef WATCH_DISK
measure_disk()
{
double mean_disk_busy;
double peak_disk_busy;
double total_reads;
double total_writes;
double total_readk;
double total_writek;
int previous_count = -1;
int i;
mean_disk_busy = 0.0;
peak_disk_busy = 0.0;
total_reads = 0.0;
total_writes = 0.0;
total_readk = 0.0;
total_writek = 0.0;
for (i=0; i<GLOBAL_disk_count; i++) {
put_output(sprintf("disk.c%dt%dd%d",
GLOBAL_disk[i].info.controller,
GLOBAL_disk[i].info.target,
GLOBAL_disk[i].info.device),
sprintf("%11.4f", GLOBAL_disk[i].run_percent));
total_reads += GLOBAL_disk[i].reads;
total_writes += GLOBAL_disk[i].writes;
total_readk += GLOBAL_disk[i].kreads;
total_writek += GLOBAL_disk[i].kwrites;
mean_disk_busy += GLOBAL_disk[i].run_percent;
if (GLOBAL_disk[i].run_percent > peak_disk_busy) {
peak_disk_busy = GLOBAL_disk[i].run_percent;
}
}
mean_disk_busy = mean_disk_busy/GLOBAL_disk_count;
put_output("disk_peak", sprintf("%9.3f", peak_disk_busy));
put_output("disk_mean", sprintf("%9.3f", mean_disk_busy));
put_output("disk_rd/s", sprintf("%9.1f", total_reads));
put_output("disk_wr/s", sprintf("%9.1f", total_writes));
put_output("disk_rK/s", sprintf("%9.1f", total_readk));
put_output("disk_wK/s", sprintf("%9.1f", total_writek));
// If the number of disks has changed, say due to a add_drv, then print
// new headers.
if (previous_count != GLOBAL_disk_count) {
print_header = 1;
previous_count = GLOBAL_disk_count;
}
}
#endif
#ifdef WATCH_DNLC
measure_dnlc()
{
put_output("dnlc_ref/s", sprintf("%10.3f", tmp_lrdnlc.refrate));
put_output("dnlc_hit%", sprintf("%9.3f", tmp_lrdnlc.hitrate));
}
#endif
#ifdef WATCH_INODE
measure_inode()
{
put_output("inod_ref/s", sprintf("%10.3f", tmp_lrinode.refrate));
put_output("inod_hit%", sprintf("%9.3f", tmp_lrinode.hitrate));
put_output("inod_stl/s", sprintf("%10.3f", tmp_lrinode.iprate));
}
#endif
#ifdef WATCH_RAM
measure_ram()
{
put_output("swap_avail", sprintf("%10ld", GLOBAL_pvm[0].swap_avail));
put_output("page_rstim", sprintf("%10d", tmp_lrram.restime));
put_output(" freememK", sprintf("%10d", GLOBAL_pvm[0].freemem));
put_output("free_pages", sprintf("%10d", (GLOBAL_pvm[0].freemem*1024)/page_size));
}
#endif
#ifdef WATCH_PAGES
measure_pages()
{
put_output("pp_kernel", sprintf("%9lu", tmp_kstat_pages.pp_kernel));
put_output("pagesfree", sprintf("%9lu", tmp_kstat_pages.pagesfree));
put_output("pageslock", sprintf("%9lu", tmp_kstat_pages.pageslocked));
put_output("pagesio", sprintf("%7lu", tmp_kstat_pages.pagesio));
put_output("pagestotl", sprintf("%9lu", tmp_kstat_pages.pagestotal));
}
#endif
#ifdef WATCH_WEB
// Breakdown access log format.
accesslog(string buf) {
int z;
int size_index;
int ishead;
string word;
char first_byte[1];
#if WATCH_PROXY || WATCH_SQUID || WATCH_YAHOO
double xf;
#ifdef WATCH_SQUID
string logtag;
string request;
#endif
#ifdef WATCH_YAHOO
string arg;
ulong ptr;
ulong tmp;
ulong ulong_xf;
#endif
#endif
ishead = 0;
#ifdef WATCH_YAHOO
// Make sure that the input line has at least 32 bytes of data plus a new
// line, for a total length of 33.
if (strlen(buf) < 33) {
return;
}
word = strtok(buf,"\05");
#else
word = strtok(buf," ");
#endif
if (word == nil) {
return;
}
#ifdef WATCH_SQUID
// Word contains unix time in seconds.milliseconds.
word = strtok(nil, " "); // Elapsed request time in ms
xf = atof(word)/1000.0;
www_dwnld_time_sum += xf;
#ifdef DINKY
printf("time: %s %f total %f\n", word, xf, xfer_sum);
#endif
word = strtok(nil, " "); // Client IP address
logtag = strtok(nil, "/"); // Log tag
word = strtok(nil, " "); // Reply code
WWW_REPLY_CODE(word)
word = strtok(nil, " "); // Size sent to client
z = atoi(word);
request = strtok(nil, " "); // Request method
word = strtok(nil, " "); // URL
if (word != nil) {
if (word =~ "cgi-bin") {
httpop_cgi_bins++;
}
if (word =~ search_url) {
httpop_searches++;
}
}
word = strtok(nil, " "); // Optional user ident
word = strtok(nil, "/"); // Hierarchy
if (word != nil) {
if (word =~ "DIRECT") {
prxy_squid_indirect++;
}
}
word = strtok(nil, " "); // Hostname
word = strtok(nil, " "); // Content-type
// Process the collected data.
if (logtag =~ "TCP") {
squid_client_http++;
}
if (logtag =~ "UDP") {
squid_icp_requests++;
}
if (logtag =~ "HIT") {
prxy_squid_cache_hits++;
}
if (logtag =~ "MISS") {
squid_cache_misses++;
}
WWW_METHOD(request)
// Do not add size if its a HEAD.
if (ishead == 0) {
dwnld_totalz += z;
}
WWW_SIZE_INDEX(z, size_index)
www_dwnld_time_by_size[size_index] += xf;
#elif WATCH_YAHOO
// Yahoo log format. Fields in square brackets will only appear in the
// log file if the data actually exists (ie. you will never see a null
// Referrer field). Further, fields labelled here with "(CONFIG)" will
// only appear if they are enabled via the YahooLogOptions configuration
// directive.
//
// IP Address (8 hex digits)
// Timestamp (time_t as 8 hex digits)
// Processing Time (in microseconds, as 8 hex digits)
// Bytes Sent (8 hex digits)
// URL
// [^Er referrer] (CONFIG)
// [^Em method] (CONFIG)
// [^Es status_code]
// ^Ed signature
// \n
// Ignore the IP address and timestamp. Get the processing time, the
// number of bytes sent and the URL. For each portion of the line, split
// it up into separate pieces.
if (sscanf(word, "%8lx%8lx%8x%8x", &tmp, &tmp, &ulong_xf, &z) != 4) {
return;
}
xf = ulong_xf/1000000.0;
WWW_SIZE_INDEX(z, size_index)
www_dwnld_time_sum += xf;
www_dwnld_time_by_size[size_index] += xf;
if (word =~ "cgi-bin") {
httpop_cgi_bins++;
}
if (word =~ search_url) {
httpop_searches++;
}
for (;;) {
word = strtok(nil, "\05");
if (word == nil) {
break;
}
first_byte = word;
ptr = &word + 1;
arg = ((string) ptr);
ptr = 0;
switch (first_byte[0]) {
case 'm':
WWW_METHOD(arg)
ptr = 1;
break;
case 's':
WWW_REPLY_CODE(arg)
break;
default:
break;
}
}
// If no method was seen, then assume it was a GET.
if (ptr == 0) {
httpop_gets++;
}
// Do not add size if its a HEAD.
if (ishead == 0) {
dwnld_totalz += z;
}
#else /* common or netscape proxy formats */
strtok(nil, " "); // -
strtok(nil, " "); // -
strtok(nil, " ["); // date
strtok(nil, " "); // zone]
word = strtok(nil, " \""); // GET or POST
WWW_METHOD(word)
word = strtok(nil, " "); // URL
if (word != nil) {
if (word =~ "cgi-bin") {
httpop_cgi_bins++;
}
if (word =~ search_url) {
httpop_searches++;
}
}
// Sometimes HTTP/1.x is not listed in the access log. Skip it
// if it does exist. Load the error/success code.
word = strtok(nil, " ");
if (word != nil && (word =~ "HTTP" || word =~ "http")) {
word = strtok(nil, " ");
}
WWW_REPLY_CODE(word)
word = strtok(nil, " "); // Bytes transferred.
if (word != nil) {
z = atoi(word);
if (ishead == 0) { // Do not add size if its a HEAD.
dwnld_totalz += z;
}
WWW_SIZE_INDEX(z, size_index)
}
#ifdef WATCH_PROXY
word = strtok(nil, " "); // status from server
word = strtok(nil, " "); // length from server
word = strtok(nil, " "); // length from client POST
word = strtok(nil, " "); // length POSTed to remote
word = strtok(nil, " "); // client header req
word = strtok(nil, " "); // proxy header resp
word = strtok(nil, " "); // proxy header req
word = strtok(nil, " "); // server header resp
word = strtok(nil, " "); // transfer total secs
word = strtok(nil, " "); // route
// - DIRECT PROXY(host.domain:port) SOCKS
if (word != nil) {
if (strncmp(word, "PROXY", 5) == 0 ||
strncmp(word, "SOCKS", 5) == 0) {
prxy_squid_indirect++;
}
}
word = strtok(nil, " "); // client finish status
word = strtok(nil, " "); // server finish status
word = strtok(nil, " "); // cache finish status
// ERROR HOST-NOT-AVAILABLE = error or incomplete op
// WRITTEN REFRESHED CL-MISMATCH(content length mismatch) = cache_writes
// NO-CHECK UP-TO-DATE = cache_hits
// DO-NOT-CACHE NON-CACHEABLE = uncacheable
if (word != nil) {
switch(word) {
case "WRITTEN":
case "REFRESHED":
case "CL-MISMATCH":
prxy_cache_writes++;
break;
case "NO-CHECK":
case "UP-TO-DATE":
prxy_squid_cache_hits++;
break;
case "DO-NOT-CACHE":
case "NON-CACHEABLE":
prxy_uncacheable++;
break;
default:
break;
}
}
word = strtok(nil, " ["); // [transfer total time x.xxx
if (word != nil) {
xf = atof(word);
www_dwnld_time_sum += xf;
www_dwnld_time_by_size[size_index] += xf;
}
#endif
#endif
}
measure_web(long sleep_till)
{
double lastops = 0.0;
char buf[BUFSIZ];
int i;
long now;
httpops = 0.0;
httpops5 = 0.0;
gateops = 0.0;
httpop_gets = 0;
httpop_condgets = 0;
httpop_posts = 0;
httpop_cgi_bins = 0;
httpop_errors = 0;
httpop_searches = 0;
for (i=0; i<5; i++) {
dwnld_size[i] = 0;
#if WATCH_PROXY || WATCH_SQUID || WATCH_YAHOO
www_dwnld_time_by_size[i] = 0.0;
#endif
}
dwnld_totalz = 0;
#if WATCH_PROXY || WATCH_SQUID || WATCH_YAHOO
www_dwnld_time_sum = 0.0;
#endif
#if WATCH_PROXY || WATCH_SQUID
prxy_squid_indirect = 0;
prxy_squid_cache_hits = 0;
#ifdef WATCH_PROXY
prxy_cache_writes = 0;
prxy_uncacheable = 0;
#else
squid_cache_misses = 0;
squid_icp_requests = 0;
squid_icp_queries = 0;
squid_client_http = 0;
#endif
#endif
if (www_log_filename != nil) {
now = time(0);
while (now < sleep_till) {
#ifdef WATCH_CPU
sleep_till_and_count_new_proceses(now + 5);
#else
sleep(5);
#endif
now = time(0);
if (www_fd != 0) {
while (fgets(buf, BUFSIZ, www_fd) != nil) {
httpops += 1.0;
if (www_gatelen > 0) {
if (strncmp(buf, www_gateway, www_gatelen) == 0) {
gateops += 1.0;
}
}
accesslog(buf);
}
}
/* see if the file has been switched or truncated */
stat(www_log_filename, www_stat);
if (www_ino != www_stat[0].st_ino || www_size > www_stat[0].st_size) {
if (www_fd != 0) {
fclose(www_fd); /* close the old log */
}
/* log file has changed, open the new one */
www_fd = fopen(www_log_filename, "r");
if (www_fd != 0) {
www_ino = www_stat[0].st_ino;
while(fgets(buf, BUFSIZ, www_fd) != nil) {
httpops += 1.0;
if (www_gatelen > 0) {
if (strncmp(buf, www_gateway, www_gatelen) == 0) {
gateops += 1.0;
}
}
accesslog(buf);
}
}
}
www5_now = gethrtime();
www5_interval = (www5_now - www5_then) * 0.000000001;
www5_then = www5_now;
dtmp = (httpops - lastops)/www5_interval;
if (dtmp > httpops5) {
httpops5 = dtmp;
}
lastops = httpops;
// Remember size for next time.
www_size = www_stat[0].st_size;
}
}
else {
sleep_till_and_count_new_proceses(sleep_till);
www5_now = gethrtime();
}
www_now = www5_now;
www_interval = (www_now - www_then) * 0.000000001;
www_then = www_now;
// Use dtmp to get percentages.
if (httpops == 0.0) {
dtmp = 0.0;
}
else {
dtmp = 100.0 / httpops;
}
#if WATCH_PROXY || WATCH_SQUID || WATCH_YAHOO
for (i=0; i<5; i++) {
if (dwnld_size[i] == 0) {
www_dwnld_time_by_size[i] = 0.0;
}
else {
www_dwnld_time_by_size[i] = www_dwnld_time_by_size[i]/dwnld_size[i];
}
}
#endif
}
int count_proc(string name)
{
int count;
prpsinfo_t p;
count = 0;
for (p=first_proc(); p.pr_pid != -1; p=next_proc()) {
if (p.pr_fname =~ name) {
count++;
}
}
return count;
}
put_httpd()
{
put_output("#httpds", sprintf("%7d", count_proc(www_server_proc_name)));
put_output("httpop/s", sprintf("%8.2f", httpops/www_interval));
put_output("http/p5s", sprintf("%8.2f", httpops5));
put_output("cndget/s", sprintf("%8.2f", httpop_condgets/www_interval));
put_output("search/s", sprintf("%8.3f", httpop_searches/www_interval));
put_output(" cgi/s", sprintf("%8.3f", httpop_cgi_bins/www_interval));
put_output(" htErr/s", sprintf("%8.3f", httpop_errors/www_interval));
put_output(" httpb/s", sprintf("%8.0f", dwnld_totalz/www_interval));
put_output(" %to1KB", sprintf("%8.2f", dtmp*dwnld_size[0]));
put_output(" %to10KB", sprintf("%8.2f", dtmp*dwnld_size[1]));
put_output("%to100KB", sprintf("%8.2f", dtmp*dwnld_size[2]));
put_output(" %to1MB", sprintf("%8.2f", dtmp*dwnld_size[3]));
put_output("%over1MB", sprintf("%8.2f", dtmp*dwnld_size[4]));
put_output(www_gateway, sprintf("%8.2f", gateops/www_interval));
#if WATCH_PROXY || WATCH_SQUID
put_output(" %indir", sprintf("%8.2f", dtmp * prxy_squid_indirect));
put_output("%cch_hit", sprintf("%8.2f", dtmp * prxy_squid_cache_hits));
#ifdef WATCH_PROXY
put_output("%cch_wrt", sprintf("%8.2f", dtmp * prxy_cache_writes));
put_output("%cch_unc", sprintf("%8.2f", dtmp * prxy_uncacheable));
#else
put_output("%cch_mis", sprintf("%8.2f", dtmp * squid_cache_misses));
put_output("%cch_req", sprintf("%8.2f", dtmp * squid_icp_requests));
put_output("%cch_qry", sprintf("%8.2f", dtmp * squid_icp_queries));
#endif
put_output(" xfr_t", sprintf("%8.2f", 0.01 * dtmp * www_dwnld_time_sum));
put_output(" xfr1_t", sprintf("%8.2f", www_dwnld_time_by_size[0]));
put_output(" xfr10_t", sprintf("%8.2f", www_dwnld_time_by_size[1]));
put_output("xfr100_t", sprintf("%8.2f", www_dwnld_time_by_size[2]));
put_output(" xfr1M_t", sprintf("%8.2f", www_dwnld_time_by_size[3]));
put_output("xfro1M_t", sprintf("%8.2f", www_dwnld_time_by_size[4]));
#elif WATCH_YAHOO
put_output(" wprc_t", sprintf("%9.5f", 0.01 * dtmp * www_dwnld_time_sum));
put_output(" wprc1_t", sprintf("%9.5f", www_dwnld_time_by_size[0]));
put_output(" wprc10_t", sprintf("%9.5f", www_dwnld_time_by_size[1]));
put_output("wprc100_t", sprintf("%9.5f", www_dwnld_time_by_size[2]));
put_output(" wprc1M_t", sprintf("%9.5f", www_dwnld_time_by_size[3]));
put_output("wprco1M_t", sprintf("%9.5f", www_dwnld_time_by_size[4]));
#endif
}
#endif
More information about the Orca-announce
mailing list